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SUMIURY 

W« contldtr a ■lnplifi«d sattllltt trajectory problem, 

oorrespondlng to a flat earth aaaunption,   flrat treated by 

Okhotaimskll and Eneev.     We present a numerical  solution 

based upon the functional equation technique of dynamic 

programming,   and a proof of the fundamental result in the 

analytic   solution. 

The  same computational approach can be applied to 

more  realistic trajectory problems. 
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AN APPLICATION OP DYNAMIC  PHDORAMMINO 
TO  THE  DETERMINATION OP 

OPTIMAL  SATELLITE TRAJECTORIES 

Richard Bellman 
Stuart    Dreyfus 

1.     Introduction 

In this paper we wish to consider the problem of deter- 

mining optimal  satellite  trajectories.     To  Illustrate  the 

genera), techniques of dynamic programming,  we shall consider 

In detail a simplified  satellite trajectory  problem,  posed 

and treated by D.  E.  Okhotslraskll and T.   M.   Eneev In a 

paper originally published In Russian In   [l)#>  and then 

published In English translation In   12 •♦. 

Despite superficial evidence of the correctness of 

their theories and results,   It would appear that the mathe- 

matical argumentation In their papers Is at best Incomplete. 

One purpose of this paper Is to deduce one of thel * 

principal  results rigorously using standard varlatlonal 

arguments.     What Is rather Interesting Is  that we arrive at 

a varlatlonal problem of unconventional  type which has not 

been treated to any extent  In the literature. 

The principal part of our paper Is devoted to the compu- 

tational solution or the problems by means of the functional 

equation technique of dynamic programming.     We shall present 

"^       9{1] '     Utpekhl  Flzlohesklkh Nauk,   September,   1957. 

♦•[2].     J.  British  Interplanetary Soc.,   Jan.-Feb.,   195Ö. 
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some numerical results.  The layportance of this approach 

lies In the fact that we can solve In the same manner 

varlatlonal problems which defy precise analysis. 

2. The Simplified  Problem 

We wish to ascertain the thrust  control policy and 

fuel  consumption regime which will put a  satellite Into 

orbit  at a specified altitude with majdmum horizontal 

component of velocity. 

Essential  simplifications arise  from the neglect 

of aerodynamic  forces  and the assumption  that  the terrestrial 

gravitational field Is plane-parallel. 

Determination of paths of minimum fuel,  maximum 

altitude,  and so on,  can be treated along the same llnej as 

the  following discussion. 

3. Mathematical Formulation 

The equations of motion of a satellite traveling over a 

flat earth In a Cartesian coordinate system will be taken 

to be 

(1)      ^ = p cos ^ 

^ = p sin ^ - g 

dx 
IE u. 
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Here 

(2)     (a)    x    and    y    are,  as usual,   the horizontal and 

vertical ooordlnatee, 

(b) u    and    w    are the horizontal and vertical 

projection» of velocity, 

(c) p    is the magnitude of acceleration due to 

reaction force, 

(d) ^    ie the  inclination of the  thrust to the 

horizontal. 

^ u 

Pig.   1 

If we introduce  the quantity    V    as  the velocity avail- 

able to the satellite in the idealized case of no 

gravitational  force,  we obtain the relation 

(3) dv 
- P 

The variable    V    will  be a monotone  function of the quantity 

of fuel.    Since 
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(4) p-^, 

where    P    Is the  thrust,  and 

c  dM 
g HP (5) P-_£dH 

where M Is the weight tad o it the exit veloolt/ of the 

gases, we can  solve for M in terms of the "Ideal avail- 

able velocity,"  V,  obtaining the equation 

(6)      M = M.eV/s, 

where M  is the weight of the empty recket. e 
The equations of motion,   (3.1),   together with  (6) pre- 

ceding,  which yields mass as a function of    V,    and  (4) 

above,  giving acceleration in terms of thrust and mass, 

enable us to determine optimal  Inclinations and optimal 

magnitude of thrust as functions of    V.     In the next  section 

we shall consider the associated variatlonal problem. 

4.     Varlatlonal  Formulation 

A dlr«ct   statement of the problem of determining 

optimal  thrust  and  inclination leads  to immediate diffi- 

culties because of the linearity of the equations and 

criterion function.     An optimal  policy would consist  of 

either zero or infinite accelerations.     Since this last  is 

physically meaningless,  in order to pose a sensible 

variatlonal problem we impose a constraint of maximum 
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posslble thrust,     Q.     Furthermore,   in these initial  sections 

we shall agree to bum all the fuel at maximum allowable 

rate and then coast. 

This assumption will not be made in later sections 

where we obtain a direct computational solution using 

dynamic programming techniques.     As will be seen,  even under 

these simplifying assumptions,  we are led to variational 

problems of some novelty and interest. 

Vith the foregoing assumptions,   the problem posed 

verbally in ^2    «cotnes that of determining; the inclination 

function    ^(V)    which maximizes 

(1) JW) --/0   •••^«T. 

subject to the restriction that 

<2>     ^ f^i^dV'H' V0 

and the relations in (3.1) and (3.3) -  (3-6).    Here 

(3)    (a)    H    is the prescribed altitude, 

(b)    V0    is the Initial Ideal  velocity. 

The functional in (2) evaluates the altitude gained 

during burning together with the altitude obtained after 

burnout due to the vertical component of velocity at 

burnout. 
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Coasting 

/ 

Burnout point 

Pig. 2 

3. Preliminary Tranaforma „ion 

Referring to the equations of (3.1), we see that the 

constraint in (4.2) may be written in the form 

(1) 
/70 w_jiin^ dv .- H. 

Turning back to  (3-1)/ we may write 

(2) (V)  - «n-/
V (»In^-ÄJdV. 

Uelng this relation in (5.1), we obtain the relation 

(3)     f0  sin *  r(V)dV t-kl/0  sin ^dv!  - H, 
0 

where the function r(V) is given by 
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(4)     r(v).^.^V^,^_^ feV/c_.V 
S 

70 

kl + k2eV/C' 

whert k,  and k» are constants. 

6.  Discussion 

Vs thus obtain the problem of maximizing J{j),    so 

glvsn by (^.1)# subject to the constraint of (3) above. 

This is representative of an  interesting class of varia- 

tional problems which do noc appear to have been discussed 

in any detail heretofore. 

Hie general problem would be that of maximizing a 

functional 

(1)     Jx(y) =/
T P1(x,y)dt, 

subject to constraints of the form 

(2) J2(y)  - o//T P2(x,y)dtiy
?T P3(x,y)dt,   ..., 

/T PN(x,y)dt^   - k. 

We shall present a formal analysis, postponing a more 

rigorous discussion until a later date. 

7«    Variational Analysis 

As usual, we set 



8-19-58 

(1) ^ - ? ^% 

where 6 la an Infinitesimal. We have 

(2)      J(/0 = J(?)-€/0y.in7dV. 

and (5.3) yields 

(3) f0 f 00. ? r(V)dV + i f/
0 am ? tfv] [/0 t cos ? dv)   - 0. 

vo lvo     ; ro      / 

Since H^ is arbitrary, it follows that there exists 

a constant A such that 

CO sin j? - A r(V) coa ? -»- I f/0 ain J dv] oca ? 

Since    /      sin 7 dV    la a constant, albeit unknown,  and 
0 k. 

(5) ir(v) . k 4 eV/0 --? eVA dV 

k^ „/   „/_  _«  n c 2 .V/c KP -V/C  «P   "e"'  , 

It follows that we obtain the laportant conclusion that the 

optimal policy, f,    la characterized by the property that 

(6) Si tan p *  A, 

a constant. 

This agrees with the result claimed in [2] . 
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8, Dynamic PrograBciing Approach—I 

Let us now see how we can employ the functional equation 

approach of dynamic programming to obtain a computational 

solution. The basic Idea Is to regard the problems of the 

calculus of variations as particular examples of multi-stage 

decision processes of continuous type.  This approach Is 

discussed In some detail In [3] ***, and applied to optimal 

trajectory problems In [4j»eee. 

The state variables are altitude y,  vertical component 

of velocity w, and Ideal available velocity V. Conse- 

quently, we Introduce the function 

(1)      f(V,w,y) = the additional horizontal velocity ob- 

tained starting at altitude y, vertical 

component of velocity w and Ideal 

available velocity V,  and using an 

optimal policy. 

Referring to the defining equations of motion In ^3, and 

using the Principle of Optlmallty as In [3] or [^ , we obtain 

the functional equation 

*•• UJ •  Bellman, R., dynamic Programming^ Princeton 
University Press, Princeton, New Jersey, 1957~ 

eeee p|] .  Cartalno, T., and S. Dreyfus, "Application of 
djnuusio progrsamlng to the airplane minimum tlme-to-cllmb 
ppoblea," Aeronautical &^glneerlng Review, vol. 16, no. 6, 
1957. PP. 7^77. 
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co» ^AV + f V - AV,w + |»ln ^ --5^  

y + —?^— AVj 

whert AV !• regarded as a small quantity. 

Lsttlng V assume only a finite set of values 

0,AV,2AV,...,NAV, we see that the computation beoomes that of 

determining a sequence of functions of two variables 

fN(w»y) ■ f(NA,w,y), using (2). 

9. Dynasd.c Programming Approach—II 

In order to simplify the computation, we use a Lagrange 

multiplier formalism, as discussed In [5]****** to reduce the 

problem to one of determining a sequence of functions of one 

variable. 

In place of maximizing J(^)  subject to the constraint 

of (5-1), we consider the problem of maximizing 

(i)     .y^ooi^dv.y^dv, 

subjsct to the constraints of the equations of motion.  Here 

A is the Lagrange parameter. 

AV, 

••«»« £5j .  Bellman,, R., "Dynamic programming and 
Lagrange multipliers," Proc. Mat. Acad. Sei. USA, vol. 42, 
1956, pp. 767-769. 
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Th« new functional equation for tht maxliraun value la 

(2) f(V,w) Max Max 
/wM e 

coe ^AV + -  e 

V/c 

W -AV 

+ f V - AV,w 4  »In ^ - 
MeVc 

AV , 

AwAt + f(V,w - gAt) 

where the second alternative within the Max 

represent! a decision to coast for a small time interval At. 

The  parameter A ia adjusted until the altitude con- 

atralnt of ( 4.2 ) Is met.  By using the Lagrange parameter, 

we have partitioned a problem originally Involving a sequence 

of functions of two variables into a set of problems Involving 

functions of one variable.  The gain in computing time and 

effort ia ccnaiderable. 

10.  Computational Aspects 

The numerical solution Is obtained by iterating the 

recurrence equation {J.2)  backwards from the lenown final 

values.  The calculation is begun by observing that. If bum- 

out occurs with a vertical component of velocity w,  the 

additional altitude obtained durlrg coasting will be w /2g 

and the additional horizontal velocity will be zero.  Hence 

f(0,w) - ^w /2g.  A table containing f(0,w)  for a range of 

w values (we do not yet know to what burnout value of w 

the optimal policy will lead) ia atored In the high speed 

memory of the computer. 



8-19-58 
-12- 

Thla tabular function Is now ustd to determine a new 

function,  f(AV,w)/  the total additional horizontal velocity 

plus A times the altitude that can be attained otartlng with 

a small quantity AV of "arailable velocity (fuel)" and 

vertical velocity component \f.  This calculation ie per- 

formed using equation (^.2).  We nctually evaluate the gain 

associated with choices of different j» a and  P's and 

compare this with the return from a decision to coast.  On 

this basis we pick the optimal decision.  The return from 

this decision is recorded in the computer memory as the value 

of f(ÄV,w)  for the particular value of w considered.  A 

second table la constructed giving the optimal decision that 

yielded f(AV,w).  A third table,  J(AV,w),  is maintained 

giving the total altitude gained when following an optimal 

path starting from (AV,w).  Since we are flying so as to 

tnaxlmlze horizontal velocity plus A    times altitude, this 

third table is Just a convenient record that is not used in 

the calculation, but which, when the Iteration of equation 

(4.2) Is finished, yields immediately the total altitude (and 

hence the horizontal velocity,  f(V,0) - ^J(V,0)), gained by 

following an optimal trajectory. 

Once the technique described above for calculating 

f(AV,w)  using the table of f(0,w) has been programmed for 

a computer, It Is a simple matter to have the same code 

calculate  f(2AV,w)  from f(AV,w)  and, finally,  f(V,w) 

from  f(v - AV,w).  Notice that at each etageof thin 

computation only one table of the function f  is needed to 
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coatpute the next table in the sequenoe.  Once a table has 

been computed and used In the calculation of the next table 

It can be printed by tne computer and destroyed in memory. 

Hence the computer memory capacity required is determined by 

the number of discrete points chosen for the w-table, and 

does not depend on the fineness of the AV grid.  The total 

time for a calculation depends inversely on the siM of AV. 

At the completion of tho backwards iteration of equation 

(4.2) one knows the horizontal velocity and altitude obtained 

by an optimal policy for the specified initial conditions. 

Also the initial decision for the starting point is deter- 

mined by the nature of the calculation of f(V,w).  To re- 

construct the optimal path in its entirety one now determines 

the new value of w after using the prescribed decision for 

the first AV interval.  In calculating f(V - AV,w) for 

this w-value, an optimal decision was determined and recorded 

(since the actual w may not be a point of the w-grid,Inter- 

polation may be necessary) and this decision is used during 

the interval V - AV to V — 2AV. In this manner we use the 

output of the sequence of calculations, processing them in 

the opposite order from that in which they were computed. 

The above operation may be performed easily by the com- 

puter as the final step of the calculation If the requisite 

tables are stored on tape or punched into cards. 

Once the problem has been solved, one examines the final 

altitude to determine if the required height was attained.  A 
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new value of the Lagrange multiplier 'N la then calculated 

based upon previous value» and resul* and the calculation 

la  repeated. 

One  calcui yields  tl        , tlmal  path,   In  lenas of 

horizontal  velocliy   •    A-   aiinade,   for a wide range of 

Initial   vertical  components of  velocity.     Thla variety of 

results  Is of Interest  In problems where  Initial vertical 

velocity  Is not  necessarily  specified and the answers  for a 

range of  values  is  desired.     Secondly,   after  several  varia- 

tions of    A,    optimal  trajectories  to several  different 

altitudes  are known,   yielding an Interesting  estimate of  the 

trade-off  between  altitude  and velocity  along optimal 

trajectories. 

11.     Numerical  Results 

For all  calculations,   we have assumed a hypothetical 

missile with the  following char^jterlstlcs: 

E«pty v«ight,     Ha  - 3000 lb». 

Kxhaust  velocity,     c  - 11,000  ft./sec. 

Maximum thrust,     P -  300,000 lbs. 

Minimum thrust  with engine on,     P - 30,000  lbs. 

Total  Ideal  available  velocity  -  30,000  ft./sec. 

'ftiese  data imply  a total weight  at  takeoff of  76,436 

lbs. 

A  value of    A    of .00142    yielded a  final  altitude  of 

approximately 430 miles with a horizontal  component  of 
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veloclty at this altitude of    26,300 ft./flee. 

Varloui pararoeterfl  and grld-slzea  required for numerical 

solution were  chosen as  follows: 

1. AV =• 1000.     Therefore  the  recurrence relation 

was Iterated 30 times. 

2. Aw = 50.     Each table of    f(V,w)    contained 

261 numbers,   since    w    was allowed to assume  value 

from 0 to    14,000. 

3. A*  -   .01    radian.      Admissible thrust angles 

were    0,   .01,   .02,   ...,   T/2    radians. 

4. Thrust could assume values    300,000,   2t)0,000, 

200,000,   150,000,   100,000,     or    50,000. 

These numbers were  determined experimentally.     They 

possess  thf  property  that  a  further  refinement has  little  or 

no effect on the computed  solution. 

A  condensed  summary  of  the  solution,   as  computed on  the 

RAND JOHNNIAC  computer in  20 minutes,   le  bhown below. 

It  should be noted   that,   although  In  this  simplified 

study   the  rocket  Is  flown at  maximum thrust   until  burnout  and 

the  thrust  direction obeys a  simple  law,   the  computational 

scheme  assumes  neither of  these  results.     It   Is  therefore 

applicable  to more  general  problems  that  are  not  amenable  to 

conventional mathematical analysis. 
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V 
(ft/ 
sec ) 

Mass 

(lb) 

h 

(ft) 

w 
(ft/ 
BtC ) 

U 
(ft/ 
sec ) 

* 

(rad.) 

P 

(lbs) 

Tim« 

(•to) 

30,000    76,456 GOO .560 300,000 0 

25,000    48,529 16,045      1,514      4,279 -523 300,000 33.3 

20,000    30,803 57,720      3,306      8,625 .501 300,000 54.4 

15,000    19,552 10u,344      5,259    13,020 .490 300,000 67.8 

10,000    12,410 152,954      7,330    17,436 .480 300,000 76.3 

5,000      7,877 192,048     9,464    21,071 .480 300,000 81.7 

burnout    5,000 224,920    11,650    26,313 .472 300,000 85.1 

end of 
coast         5,000 2,337,679              0    26,313 0 0 444.7 

12.     Flow-ohart 

A flow diagram of  the program is  shown below: 
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sln p - 
Me V/cx 

w AV ■> ß 

No 

V >  V       ? Yes 
STOP; 


